

Reg.	No.	:	 	 	••••
Nam	Δ.				

IV Semester M.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular) Examination, April 2025 (2023 Admission)

MATHEMATICS/MATHEMATICS (Multivariate Calculus and Mathematical Analysis, Modelling and Simulation, Financial Risk Management)

MSMAT04E06/MSMAF04E07: Fourier and Wavelet Analysis

Time: 3 Hours Max. Marks: 80

PART - A

Answer any five questions. Each question carries 4 marks.

 $(5 \times 4 = 20)$

- 1. Define conjugate reflection. Suppose $z, w \in I^2(\mathbb{Z}_N)$, prove that $z * \tilde{w}(k) = \langle z, R_k w \rangle$ for any $k \in \mathbb{Z}$.
- 2. Suppose N is even, say N = 2M, $z \in I^2(\mathbb{Z}_N)$ and $w \in I^2(\mathbb{Z}_{N/2})$. Prove that D(z) * w = D(z * U(w)).
- 3. Prove that trigonometric system is an orthonormal set in $L^2([-\pi, \pi))$.
- 4. Suppose H is a Hilbert space and $\{a_j\}_{j\in\mathbb{Z}}$ is an orthonormal set in H. Prove that $\{a_j\}_{j\in\mathbb{Z}}$ is a complete orthonormal set if and only if $f=\sum_{j\in\mathbb{Z}}\left\langle f,a_j\right\rangle a_j$ for all $f\in H$.
- 5. Suppose z, $w \in I^2(\mathbb{Z})$, prove that U(z * w) = U(z) * U(w).
- 6. Suppose f, $g \in L^1(\mathbb{R})$ and $\hat{f}, \hat{g} \in L^1(\mathbb{R})$. Prove that $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$.

PART - B

Answer **any three** questions. **Each** question carries **7** marks.

 $(3\times7=21)$

- 7. Suppose $M \in \mathbb{N}$, N = 2M and $w \in I^2(\mathbb{Z}_N)$. Prove that $\left\{R_{2k}w\right\}_{k=0}^{M-1}$ is an orthonormal set with M elements if and only if $\left|\widehat{w}(n)\right|^2 + \left|\widehat{w}(n+M)\right|^2 = 2$ for n = 0, 1, ..., M-1.
- 8. Let $u \in l^2(\mathbb{Z}_4)$ be such that $\hat{u} = (1, \sqrt{2}, i, 0)$. Find some \hat{v} such that $\{v, R_2 v, u, R_2 u\}$ is an orthonormal basis for $l^2(\mathbb{Z}_4)$.

K25P 0958

-2-

- 9. Suppose T: L² ([$-\pi$, π)) \to L² ([$-\pi$, π)) is a bounded, translation invariant linear transformation. Then prove that for each $m \in \mathbb{Z}$, there exists $\lambda_m \in \mathbb{C}$ such that T ($e^{im\theta}$) = $\lambda_m e^{im\theta}$.
- 10. Suppose $z \in I^2(\mathbb{Z})$ and $w \in I^1(\mathbb{Z})$. Then prove that $z * w \in I^2(\mathbb{Z})$ and $||z * w|| \le ||w||_1 ||z||$.
- 11. Suppose f, $g \in L^1(\mathbb{R})$. Prove that
 - i) $\int_{\mathbb{R}} |f(x-y)g(y)| dy < \infty$ for a.e $x \in \mathbb{R}$.
 - ii) $f * g \in L^1(\mathbb{R})$ with $||f * g||_1 \le ||f||_1 ||g||_1$

Answer any three questions. Each question carries 13 marks.

 $(3 \times 13 = 39)$

- 12. Suppose $M \in \mathbb{N}$ and N = 2M. Let $u, v \in l^2(\mathbb{Z}_N)$. Prove that $B = \{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1} \text{ is an orthonormal basis for } l^2(\mathbb{Z}_N) \text{ if and only if the system matrix } A(n) \text{ of } u \text{ and } v \text{ is unitary for each } n = 0, 1, ..., M-1.$
- 13. a) Define trigonometric system. Prove that the trigonometric system is complete in $L^2([-\pi, \pi))$.
 - b) Suppose $\{a_j\}_{j\in\mathbb{Z}}$ is an orthonormal set in a Hilbert space H. Let $S_A = \left\{\sum_{j\in\mathbb{Z}} z(j)a_j : z = (z(j))_{j\in\mathbb{Z}} \in I^2(\mathbb{Z})\right\}$. Define $P_S(f) = \sum_{j\in\mathbb{Z}} \left\langle f, a_j \right\rangle a_j$. Prove that $P_S: H \to S$ is linear.
- 14. a) Suppose $f: [-\pi, \, \pi] \to \mathbb{C}$ is continuous and bounded. If $\left\langle f, e^{in\theta} \right\rangle = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta = 0$ for all $n \in \mathbb{Z}$, prove that $f(\theta) = 0$ for all $\theta \in [-\pi, \, \pi]$.
 - b) Define Fourier transform on $I^2(\mathbb{Z})$. Prove that Fourier transform is one to one.

-3-

- 15. Suppose $w \in I^1 \mathbb{Z}$ and $z \in I^2(\mathbb{Z})$. Then prove that
 - i) $(z * w)^{\wedge}(\theta) = \hat{z}(\theta) \hat{w}(\theta)$ a.e
 - ii) z * w = w * z
- 16. Suppose f, $g \in L^2(\mathbb{R})$. Prove the following statements :
 - i) $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$
 - ii) $\left\| \hat{f} \right\| = \sqrt{2\pi} \left\| f \right\|$
 - iii) $\langle \hat{f}, \hat{g} \rangle = \frac{1}{2\pi} \langle f, g \rangle$
 - iv) $\|\hat{f}\| = \frac{1}{\sqrt{2\pi}} \|f\|$.

